ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
R. Wagner, U. Besserer, D. Demange, H. Dittrich, T. L. Le, K. H. Simon, K. Guenther
Fusion Science and Technology | Volume 60 | Number 3 | October 2011 | Pages 968-971
Measurement, Monitoring, and Accountancy | Proceedings of the Ninth International Conference on Tritium Science and Technology | doi.org/10.13182/FST11-A12577
Articles are hosted by Taylor and Francis Online.
At the Tritium Laboratory Karlsruhe stainless steel cross-piece ionization chambers have been used to measure the activity concentration of tritiated gases in experiments and processes for more than 10 years. New chambers with an optimized design in terms of the effective chamber volume were produced. Furthermore, they were gold and copper plated to determine the influence of the coatings on the signal and on the memory effect. A new chamber of the old design was built for direct comparison of the signals. The chambers were characterized with different helium-tritium mixtures in 8 runs and the ionisation current as a function of the static gas pressure was measured. When comparing the three new chambers, the gold chamber always showed the highest current, followed by the copper chamber. After exposing the chambers to ~13,100 TBq/m3, the memory effect was investigated by using a similar gas mixture of the earlier runs with ~1,500 TBq/m3. The gold chamber showed the highest memory effect, the copper chamber the lowest. This paper describes the design and the testing procedure of the chambers. It presents the first experimental results on the chamber performance, on the memory effects as well as calibration curves.