ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
R. Wagner, U. Besserer, D. Demange, H. Dittrich, T. L. Le, K. H. Simon, K. Guenther
Fusion Science and Technology | Volume 60 | Number 3 | October 2011 | Pages 968-971
Measurement, Monitoring, and Accountancy | Proceedings of the Ninth International Conference on Tritium Science and Technology | doi.org/10.13182/FST11-A12577
Articles are hosted by Taylor and Francis Online.
At the Tritium Laboratory Karlsruhe stainless steel cross-piece ionization chambers have been used to measure the activity concentration of tritiated gases in experiments and processes for more than 10 years. New chambers with an optimized design in terms of the effective chamber volume were produced. Furthermore, they were gold and copper plated to determine the influence of the coatings on the signal and on the memory effect. A new chamber of the old design was built for direct comparison of the signals. The chambers were characterized with different helium-tritium mixtures in 8 runs and the ionisation current as a function of the static gas pressure was measured. When comparing the three new chambers, the gold chamber always showed the highest current, followed by the copper chamber. After exposing the chambers to ~13,100 TBq/m3, the memory effect was investigated by using a similar gas mixture of the earlier runs with ~1,500 TBq/m3. The gold chamber showed the highest memory effect, the copper chamber the lowest. This paper describes the design and the testing procedure of the chambers. It presents the first experimental results on the chamber performance, on the memory effects as well as calibration curves.