ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
J. E. Klein, P. J. Foster
Fusion Science and Technology | Volume 60 | Number 3 | October 2011 | Pages 964-967
Measurement, Monitoring, and Accountancy | Proceedings of the Ninth International Conference on Tritium Science and Technology | doi.org/10.13182/FST11-A12576
Articles are hosted by Taylor and Francis Online.
A PAssively Cooled, Electrically heated hydride (PACE) Bed has been deployed into tritium service in the Savannah River Site (SRS) Tritium Facilities. The bed design, absorption and desorption performance, and cold (non-radioactive) in-bed accountability (IBA) results have been reported previously. Six PACE Beds were fitted with instrumentation to perform the steady-state, flowing gas calorimetric inventory method. An IBA inventory calibration curve, flowing gas temperature rise (T) versus simulated or actual tritium loading, was generated for each bed. Results for non-radioactive (“cold”) tests using the internal electric heaters and tritium calibration results are presented.Changes in vacuum jacket pressure significantly impact measured IBA T values. Higher jacket pressures produce lower IBA T values which underestimate bed tritium inventories. The exhaust pressure of the IBA gas flow through the bed's U-tube has little influence on measured IBA T values, but larger gas flows reduce the time to reach steady-state conditions and produce smaller tritium measurement uncertainties.