ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
S. B. Kim, S. L. Chouhan, P. A. Davis
Fusion Science and Technology | Volume 60 | Number 3 | October 2011 | Pages 960-963
Measurement, Monitoring, and Accountancy | Proceedings of the Ninth International Conference on Tritium Science and Technology | doi.org/10.13182/FST11-A12575
Articles are hosted by Taylor and Francis Online.
The high mobility of tritium as HTO implies that, under steady-state conditions, the T/H ratio (or equivalently the HTO concentration) is the same in all water compartments of the environment. This is the basis of the specific activity (SA) model, which underlies almost all environmental tritium models. SA concepts apply to organically bound tritium (OBT) as well, since the OBT formed by a given plant process at a given time has a T/H ratio that reflects the ratio in the water that enters into that process. There is no empirical evidence that the bioaccumulation of tritium in aquatic and wetland plants will occur. OBT/HTO ratios less than one is consistently found in the laboratory where the HTO concentrations to which the plants are exposed can be held constant. These data suggest a value of 0.7 for the OBT/HTO ratio under equilibrium conditions in the laboratory. Theoretical considerations suggest that the value of the OBT/HTO ratio in plants is significantly different from one and, in most cases, greater than one. This is primarily due to the much longer residence time of OBT in plants as compared to HTO. The observed HTO concentrations are much higher than OBT concentrations, which makes OBT/HTO ratio smaller than unit in contrast with SA based expectations. In addition to this, the IMPACT model overpredicted HTO and OBT concentrations in plants and animals by a factor of 3 or 4, on average. This work is summary of the AECL funded research project (1).