ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Discovering, Making, and Testing New Materials: SRNL’s Center For Hierarchical Waste Form Materials
Savannah River National Laboratory researchers are building on the laboratory’s legacy of using cutting-edge science to effectively immobilize nuclear waste in innovative ways. As part of the Center for Hierarchical Waste Form Materials, SRNL is leveraging its depth of experience in radiological waste management to explore new frontiers in the industry.
A. Kosmider, G. Drexlin, F. Eichelhardt, R. Michling, S. Welte, W. Wurster
Fusion Science and Technology | Volume 60 | Number 3 | October 2011 | Pages 956-959
Measurement, Monitoring, and Accountancy | Proceedings of the Ninth International Conference on Tritium Science and Technology | doi.org/10.13182/FST60-956
Articles are hosted by Taylor and Francis Online.
The ITER project aims at demonstrating the technical feasibility of nuclear fusion in a DT plasma. One of the important steps towards a functional fusion power plant is the development of a stable and reliable fuel cycle. Major developments on this field are made at the Tritium Laboratory Karlsruhe (TLK). In this paper the design and installation of an analysis apparatus for tritium concentrations via InfraRed (IR) absorption for engagement in the ITER ISS is described. The IR analysis is performed in the liquid hydrogen phase at the bottom of a cryogenic distillation column similar to those foreseen for ITER ISS. Technical constraints and physical boundary conditions are presented as well as experimental methods and preliminary results. The technical feasibility is shown and suggestions for further development of IR spectroscopy for ITER appliances are given.