ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fermilab center renamed after late particle physicist Helen Edwards
Fermi National Accelerator Laboratory’s Integrated Engineering Research Center, which officially opened in January 2024, is now known as the Helen Edwards Engineering Center. The name was changed to honor the late particle physicist who led the design, construction, commissioning, and operation of the lab’s Tevatron accelerator and was part of the Water Resources Development Act signed by President Biden in December 2024, according to a Fermilab press release.
N. Baglan, G. Alanic
Fusion Science and Technology | Volume 60 | Number 3 | October 2011 | Pages 948-951
Measurement, Monitoring, and Accountancy | Proceedings of the Ninth International Conference on Tritium Science and Technology | doi.org/10.13182/FST11-A12572
Articles are hosted by Taylor and Francis Online.
Tritium exists in environmental samples as: (i) Tissue Free Water Tritium (TFWT) and associated with the organic matter (OBT) under two forms; (ii) bound to oxygen and nitrogen atoms into the material (E-OBT); (iii) bound to carbon atoms into the material (NE-OBT). The analysis of the NE-OBT fraction requires the elimination of E-OBT prior measurement. This operation is generally performed through labile exchange supposing that only isotopic exchange occurs. Most of the time, the recovered exchange water are coloured indicating that other mechanisms arise.To identify and to understand these mechanisms, the combination of two analytical tools, a CHNS-O elemental analyser and a spectrophotometer was used. NE-OBT analyses are performed on numerous environmental samples. In this work aliquots of those samples, under their solid form, were taken before and after labile exchange for elemental analysis purposes. In the same time the exchange waters were stored until spectrophotometric measurements. Solid analysis show that an evolution of the elemental composition could occur during the labile exchange with potential analytical impact. Moreover, it gives first ideas on which molecule could be solubilised. This trend is confirmed through spectrophotometric analysis where bands are observed for wavelength characteristics of proteins, amino acids, nucleic acids. Those preliminary results obtained using both techniques are promising but needs confirmation in the near future to determine to which extent an analytical impact could occur and to complete the identification of soluble molecules.