ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
S. Masuzaki, T. Morisaki, M. Shoji, Y. Kubota, T. Watanabe, M. Kobayashi, J. Miyazawa, M. Goto, S. Morita, B. J. Peterson, N. Ohyabu, A. Komori, O. Motojima, LHD Experimental Group, H. Ogawa
Fusion Science and Technology | Volume 50 | Number 3 | October 2006 | Pages 361-371
Technical Paper | Stellarators | doi.org/10.13182/FST06-A1257
Articles are hosted by Taylor and Francis Online.
One of the characteristics of the heliotron-type magnetic configuration is that it has an intrinsic divertor structure (helical divertor). Particle control using a helical divertor configuration, to achieve improved confinement and sustainment of steady-state high-performance plasmas, is a major experimental goal in the Large Helical Device (LHD), the largest heliotron-type superconducting device, and it needs to be demonstrated on the route to the design of the heliotron-type fusion reactor. The LHD scrape-off layer (SOL) in the intrinsic helical divertor configuration has a unique magnetic field line structure consisting of stochastic regions, residual islands, whisker structures, and laminar layers contrasting with the "onion-skin"-like magnetic field line structure in poloidal divertor tokamak SOLs. Since the first experimental campaign in LHD in 1998, studies aiming at understanding the edge plasma properties in the "open" helical divertor configurations have been conducted experimentally and theoretically. In this paper, the helical divertor studies in the LHD are reviewed, and the future experimental plan is shown.