ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
T. Mizuuchi, F. Sano, K. Nagasaki, H. Okada, S. Kobayashi, K. Hanatani, Y. Torii, Y. Ijiri, T. Senju, K. Yaguchi, K. Sakamoto, K. Toshi, M. Shibano, K. Kondo, Y. Nakamura, M. Kaneko, H. Arimoto, G. Motojima, S. Fujikawa, H. Kitagawa, H. Nakamura, T. Tsuji, M. Uno, S. Watanabe, H. Yabutani, S. Matsuoka, M. Nosaku, N. Watanabe, S. Yamamoto, K. Y. Watanabe, Y. Suzuki, M. Yokoyama
Fusion Science and Technology | Volume 50 | Number 3 | October 2006 | Pages 352-360
Technical Paper | Stellarators | doi.org/10.13182/FST06-A1256
Articles are hosted by Taylor and Francis Online.
In the helical-axis heliotron configuration, bumpiness of the Fourier components in Boozer coordinates is introduced to control the neoclassical transport. The bumpiness helps not only to align the mod-Bmin contours with the magnetic flux surfaces but also to control the balance of bootstrap currents due to helical and toroidal ripples. Effects of bumpiness control on the plasma performance (noninductive currents, fast-ion behavior, and global energy confinement) have been investigated in Heliotron J by selecting three configurations with different bumpiness ([curly epsilon]b = B04/B00 = 0.01, 0.06, and 0.15 at = 2/3) but almost the same edge rotational transform and plasma volume. The dependence of noninductive toroidal currents is qualitatively consistent with the neoclassical prediction for the bootstrap current. The high-bumpiness configuration seems to be preferable for the confinement of fast ions. However, the longer global energy confinement time is not observed in the highest-bumpiness configuration ([curly epsilon]b = 0.15). When the dependence of the effective ripple modulation amplitude in International Stellarator Scaling 04 scaling is examined, the experimental results show that the normalized global energy confinement time seems long in the configuration with the minimum effective ripple modulation amplitude, where [curly epsilon]b is 0.06.