ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Sandra J. Brereton et al.
Fusion Science and Technology | Volume 60 | Number 3 | October 2011 | Pages 879-884
ICF | Proceedings of the Ninth International Conference on Tritium Science and Technology | doi.org/10.13182/FST11-879
Articles are hosted by Taylor and Francis Online.
The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory is the world's largest and most powerful laser system for inertial confinement fusion (ICF) and experiments studying high energy density (HED) science. NIF is a 192- beam, Nd-glass laser facility that is capable of producing 1.8 MJ, 500 TW of ultraviolet light, making it over fifty times more energetic than other existing ICF facilities. The NIF Project began in 1995 and completed in 2009. Ignition experiments using tritium on NIF have just commenced. Tritium arrives at the facility in individual fuel reservoirs that are mounted and connected to a target on the Cryogenic TARget POSitioner (TARPOS). CryoTARPOS provides the cryogenic cooling systems necessary to complete the formation of the ignition target's fuel ice layer, as well as the positioning system that transports and holds the target at the center of the NIF chamber during a shot. After a shot, unburned tritium is captured by the target chamber cryopumps. Upon regeneration, the cryopump effluent is directed to the Tritium Processing System, where elemental tritium is oxidized and captured on molecular sieve. Additional systems supporting tritium operations include area and stack tritium monitoring systems, local ventilation for contamination control, and a decontamination area that includes fume hoods and walk-in enclosures for working on contaminated components. This equipment has been used along with standard contamination control practices to manage the tritium hazard to workers and to limit releases to the environment to negligibly small amounts.