ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
ANS and the U.K.’s NI announce reciprocal membership agreement
With President Trump on a state visit to the U.K., in part to sign a landmark new agreement on U.S.-U.K. nuclear collaboration, a flurry of transatlantic partnerships and deals bridging the countries’ nuclear sectors have been announced.
The American Nuclear Society is taking an active role in this bridge-building by forming a reciprocal membership agreement with the U.K.’s Nuclear Institute.
D. A. Spong
Fusion Science and Technology | Volume 50 | Number 3 | October 2006 | Pages 343-351
Technical Paper | Stellarators | doi.org/10.13182/FST06-A1255
Articles are hosted by Taylor and Francis Online.
Recent stellarator optimization efforts have targeted transport measures such as quasi-symmetry, effective ripple, and alignment of particle guiding center orbits with flux surfaces. This has resulted in significant reductions in neoclassical losses so that, at least for near-term experiments, the neoclassical transport of particles and energy can be made small compared to anomalous transport. However, momentum transport properties within magnetic flux surfaces provide an additional dimension for characterizing optimized stellarators. The momentum and flow damping features of optimized stellarators can vary widely, depending on their magnetic structure, ranging from systems with near-tokamak-like properties where toroidal flows dominate to those in which poloidal flows dominate and toroidal flows are suppressed. A set of tools has been developed for self-consistently evaluating the flow characteristics of different stellarators. Application of this model to existing and planned devices indicates that plasma flow properties vary significantly. Comparisons across devices can aid in unfolding the interplay between anomalous and neoclassical damping effects as well as the impact of momentum transport properties on related plasma phenomena such as turbulence suppression, shielding of resonant magnetic error fields, and impurity transport.