ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Takehiko Yokomine
Fusion Science and Technology | Volume 60 | Number 2 | August 2011 | Pages 840-844
Computational Tools, Modeling & Validation | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 2) | doi.org/10.13182/FST11-A12491
Articles are hosted by Taylor and Francis Online.
The thermal properties of the pebble beds have a significant impact on the temperature profile of the Helium Cooled Pebble Bed blanket and the extraction of heat from the pebble beds to the coolant. The effective thermal conductivity of pebble bed has been modeled as the isotropic one. However, the isotropic thermal conductivity inherently can be achieved only the case with perfectly isotropic arrangement which is difficult to realized in the actual blanket device. In this paper, the relation between effective thermal conductivity tensor and fabric tensor in 2D pebble bed is investigated experimentally. It is cleared that the effective thermal conductivity tensor is proportional to the structural anisotropic tensor. And, the anisotropic feature is quite different between core region and near wall region, so that it is suggested that modeling of the effective thermal conductivity tensor of the pebble bed should be separately carried out at least in above two regions.