ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Seconds Matter: Rethinking Nuclear Facility Security for the Modern Threat Landscape
In today’s rapidly evolving threat environment, nuclear facilities must prioritize speed and precision in their security responses—because in critical moments, every second counts. An early warning system serves as a vital layer of defense, enabling real-time detection of potential intrusions or anomalies before they escalate into full-blown incidents. By providing immediate alerts and actionable intelligence, these systems empower security personnel to respond decisively, minimizing risk to infrastructure, personnel, and the public. The ability to anticipate and intercept threats at the earliest possible stage not only enhances operational resilience but also reinforces public trust in the safety of nuclear operations. Investing in such proactive technologies is no longer optional—it’s essential for modern nuclear security.
Aaron T. Aoyama, Mohamad Dagher, Russell Feder, Michael Duco, Mahmoud Youssef
Fusion Science and Technology | Volume 60 | Number 2 | August 2011 | Pages 830-834
Computational Tools, Modeling & Validation | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 2) | doi.org/10.13182/FST11-A12489
Articles are hosted by Taylor and Francis Online.
Neutron transport modeling of the ITER reactor structure including modeling the impact of potential neutron streaming along the divertor cassette requires a detailed 3-D CAD solid model of the ITER sector. An all-inclusive, full-scale CAD geometry model of a 40 degree section of the ITER reactor structure was developed for analytical use with the ATTILATM radiation transport code. The source geometry and model used was the reference 1/10th scale A-LITE 3 model provided by the ITER Project Office for radiation transport calculations. Model upscaling, examination, CAD-based cleanup and modifications were performed on each component using the commercial CAD software, SolidWorks. Based on the modified components a new full scale solid model of the ITER section including divertor cassettes was developed in order to ease the implementation of additional diagnostic components being designed by various parties.Geometry repair and modification operations were performed with the goal of obtaining a Parasolid model that would successfully import into and mesh in ATTILA. Many components were re-modeled in order to avoid faulty geometry entities that were identified after the scaling to full-size. This paper will discuss the development of this A-LITE CAD model, and its meshing in ATTILA.