ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Report: New recommendations for nuclear waste
Today, a bipartisan group of experts including energy consultant Lake Barrett and former NRC chair Allison Macfarlane have published a report titled The Path Forward for Nuclear Waste in the U.S.
The report recommends a new solution for managing domestic nuclear waste—one that centers around the foundation of an independent corporation led by reactor owners. Responsibility for waste management transport, storage, and disposal would be managed by this corporation rather than the Department of Energy.
Jose-Carlos Rivas, Javier Dies
Fusion Science and Technology | Volume 60 | Number 2 | August 2011 | Pages 825-829
Computational Tools, Modeling & Validation | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 2) | doi.org/10.13182/FST11-A12488
Articles are hosted by Taylor and Francis Online.
In this contribution, an upgraded model for plasma-wall interaction in the AINA code is presented. The AINA code is a comprehensive hybrid code comprising a global balance plasma dynamics model and a radial and poloidal thermal analysis of in-vessel components. AINA is an evolution of the SAFALY code, which was initially adopted to assess ITER EDA plasma safety events and quantitatively investigate plasma instability events in nuclear fusion reactors such as ITER.The new erosion code module includes algorithms for the most relevant plasma wall interaction phenomena that will take place in the ITER vessel during the steady state of the normal operation. Physical sputtering, radiation enhanced sublimation (RES), and chemical erosion algorithms have been added to the previous thermal sublimation algorithm. The erosion results from these models have been benchmarked with results for ITER normal operation from the B2-Eirene code.The new erosion model had to be tested with external data for particle fluxes over the wall, because the AINA code does not presently have the ability to model those particle fluxes. However, with the new results, the impurity transport model parameters have been re-calibrated and some useful conclusions have been extracted.