ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Oliviero Barana, Cédric Boulbe, Sylvain Brémond, Simone Mannori, Philippe Moreau, Nathalie Ravenel, EFDA ITM Task Force contributors
Fusion Science and Technology | Volume 60 | Number 2 | August 2011 | Pages 819-824
Computational Tools, Modeling & Validation | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 2) | doi.org/10.13182/FST11-A12487
Articles are hosted by Taylor and Francis Online.
Plasma control is recognized to be a crucial issue for the achievement of ITER objectives. One of the most challenging tasks for the preparation of the ITER operation will therefore be the design and qualification of a variety of control algorithms. This highlights the need for a simulation platform capable of supporting the design, integration and test of advanced control algorithms on complex physics models. With this aim, a generic multi-purpose “flight” simulator (GMFS) is being developed at IRFM (Institut de Recherche sur la Fusion par confinement Magnétique), CEA Cadarache, France.The GMFS is based on Kepler, a free interdisciplinary open-source Java software. Kepler will be used as a simulation platform to test and improve control algorithms before their actual use in the real control system. The physics and engineering codes complementary to the control algorithms will be supplied by the EFDA Integrated Tokamak Modelling Task Force (ITM-TF). The GMFS will be benchmarked, at the beginning, on the Tore Supra Tokamak.In this paper we will report on a test case suitable to demonstrate the feasibility of a part of GMFS, namely the development of workflows where to create and verify ITER plasma boundary feedback control algorithms. It consists of: a) derivation of a linear plasma response model; b) design of a control diagram under the ScicosLab/Scicos open-source software; c) porting of the diagram under Kepler; d) substitution of the Kepler controller with a controller generated by a special Scicos extension; e) substitution of the simplified static linear model with the free-boundary equilibrium code CEDRES++.The test case demonstrated the feasibility of employing Kepler, ScicosLab/Scicos and other expressly-made codes in view of the conception of valuable instruments for the active control of ITER and it can be considered as a first step in this direction.