ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
M. J. Pattison, S. Smolentsev, R. Munipalli, M. A. Abdou
Fusion Science and Technology | Volume 60 | Number 2 | August 2011 | Pages 809-813
Computational Tools, Modeling & Validation | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 2) | doi.org/10.13182/FST10-309
Articles are hosted by Taylor and Francis Online.
In a Dual-Coolant Lead-Lithium (DCLL) blanket, tritium losses from the PbLi into cooling helium streams may occur when the liquid-metal breeder is moving in the poloidal ducts. Quantitative analysis of the mass transfer processes associated with the tritium transport in the breeder as well as tritium diffusion through the structural and functional materials is important for two main reasons. The first is that there can be a substantial cost in extracting tritium from helium. The second is that tritium can make its way from the helium stream into the environment. In the present study, we analyze tritium transport in the front section of the DCLL DEMO-type Outboard blanket, where PbLi moves poloidally in a rectangular duct with an insulating flow channel insert (FCI) in the presence of a strong plasma-confining magnetic field. This involves two steps, the computation of the flow field with an MHD code, followed by the solution of the mass transfer equation with a newly-developed transport code CATRYS. The analyses included a sensitivity study to investigate how uncertainties in the properties of the materials (diffusion coefficient, solubility constant) affect the results and to assess the effect of an impervious crystalline sealing layer on the FCI.