ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
M. J. Pattison, S. Smolentsev, R. Munipalli, M. A. Abdou
Fusion Science and Technology | Volume 60 | Number 2 | August 2011 | Pages 809-813
Computational Tools, Modeling & Validation | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 2) | doi.org/10.13182/FST10-309
Articles are hosted by Taylor and Francis Online.
In a Dual-Coolant Lead-Lithium (DCLL) blanket, tritium losses from the PbLi into cooling helium streams may occur when the liquid-metal breeder is moving in the poloidal ducts. Quantitative analysis of the mass transfer processes associated with the tritium transport in the breeder as well as tritium diffusion through the structural and functional materials is important for two main reasons. The first is that there can be a substantial cost in extracting tritium from helium. The second is that tritium can make its way from the helium stream into the environment. In the present study, we analyze tritium transport in the front section of the DCLL DEMO-type Outboard blanket, where PbLi moves poloidally in a rectangular duct with an insulating flow channel insert (FCI) in the presence of a strong plasma-confining magnetic field. This involves two steps, the computation of the flow field with an MHD code, followed by the solution of the mass transfer equation with a newly-developed transport code CATRYS. The analyses included a sensitivity study to investigate how uncertainties in the properties of the materials (diffusion coefficient, solubility constant) affect the results and to assess the effect of an impervious crystalline sealing layer on the FCI.