ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Chiara Mistrangelo, Leo Bühler
Fusion Science and Technology | Volume 60 | Number 2 | August 2011 | Pages 798-803
Computational Tools, Modeling & Validation | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 2) | doi.org/10.13182/FST11-A12483
Articles are hosted by Taylor and Francis Online.
In the framework of the study of a European helium cooled lead lithium blanket concept for ITER, numerical tools are developed to complement experimental activities. Full capability to simulate numerically the global magnetohydrodynamic flow and pressure distributions resulting from the interaction of the liquid metal with the strong plasma confining magnetic field is not achieved yet. Calculations should support the selection and validation of physical models for 3D coupled phenomena, like magneto-convection, as well as for corrosion and tritium permeation processes. Moreover, simulations help to interpret measurement data and to enhance the development of extrapolation procedures from small-scale experiments to a DEMO reactor.The present paper summarizes the mathematical algorithm and modeling requirements for accurate predictions of liquid-metal flows under very intense magnetic fields in geometries with arbitrary electric conductivity of the walls. The Lorentz force term and additional equations determining electric current density and potential have been introduced in a consistent and conservative way into the existing hydrodynamic open source code OpenFOAM. The use of non-orthogonal corrections leads to a significant improvement of the MHD code at fusion relevant strong magnetic fields. The discussion focuses on benchmark problems used to validate the new developed tool and on the treatment in OpenFOAM of MHD flows in geometries with walls of finite electric conductivity. According to the authors' knowledge, the implementation of this capability in this open source code has not been reported so far in other references.