ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Robert Martin, Farrokh Najmabadi
Fusion Science and Technology | Volume 60 | Number 2 | August 2011 | Pages 793-797
Computational Tools, Modeling & Validation | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 2) | doi.org/10.13182/FST11-A12482
Articles are hosted by Taylor and Francis Online.
Commercial inertial fusion energy power plants will require 5-20Hz fusion target injection rates for utility-scale power production. To mitigate damage from target emission, some designs include a buffer gas in the chamber to reduce heat and particle fluxes to the chamber wall. The evolution of chamber environment between shots is an important issue as residual heat and eddies in the gas pose a serious threat on target survival during injection and target trajectory.We have simulated the evolution of a direct-drive IFE chamber with helium, deuterium, and xenon buffer gases at several densities. To evaluate the link between these simulations and the risk posed to a direct-drive target, we modify an analytical expression of the free-molecular heat flux on a surface element to account for the possibility of chamber gas condensation on the target. We show this expression compares favorably with Monte Carlo simulations in the same gas regime. These results are used to estimate risk for target survival based on several target heating failure modes. Though lower density chamber gas would improve target survival, experimental quantification of several key gas-surface interaction coefficients for cryogenic targets could open the chamber gas design window.