ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Robert Martin, Farrokh Najmabadi
Fusion Science and Technology | Volume 60 | Number 2 | August 2011 | Pages 793-797
Computational Tools, Modeling & Validation | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 2) | doi.org/10.13182/FST11-A12482
Articles are hosted by Taylor and Francis Online.
Commercial inertial fusion energy power plants will require 5-20Hz fusion target injection rates for utility-scale power production. To mitigate damage from target emission, some designs include a buffer gas in the chamber to reduce heat and particle fluxes to the chamber wall. The evolution of chamber environment between shots is an important issue as residual heat and eddies in the gas pose a serious threat on target survival during injection and target trajectory.We have simulated the evolution of a direct-drive IFE chamber with helium, deuterium, and xenon buffer gases at several densities. To evaluate the link between these simulations and the risk posed to a direct-drive target, we modify an analytical expression of the free-molecular heat flux on a surface element to account for the possibility of chamber gas condensation on the target. We show this expression compares favorably with Monte Carlo simulations in the same gas regime. These results are used to estimate risk for target survival based on several target heating failure modes. Though lower density chamber gas would improve target survival, experimental quantification of several key gas-surface interaction coefficients for cryogenic targets could open the chamber gas design window.