ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
Zachary S. Hartwig, Massimo Zucchetti
Fusion Science and Technology | Volume 60 | Number 2 | August 2011 | Pages 725-729
Nuclear Analysis & Experiments | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 2) | doi.org/10.13182/FST11-A12471
Articles are hosted by Taylor and Francis Online.
A critical aspect of the design of a tokamak-based neutron source is to ensure that radiation limits of the structural and magnet-insulating materials are not approached during the lifetime of the tokamak. To this end, we present an exploratory neutronics study of a materials testing facility that is based on Ignitor, a high-field tokamak. It shown that sufficient radiation damage to test materials located in the Ignitor first wall can be obtained by sustaining a reaction rate of 3.33×1019 neutrons per second for 7 operational months. Solutions to mitigate terminal damage to the toroidal field coil insulators, including its substitution for modern radiation-resistant insulators and the use of advanced radiation shield materials, are explored, and their implication for the design of the facility is discussed.