ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Discovering, Making, and Testing New Materials: SRNL’s Center For Hierarchical Waste Form Materials
Savannah River National Laboratory researchers are building on the laboratory’s legacy of using cutting-edge science to effectively immobilize nuclear waste in innovative ways. As part of the Center for Hierarchical Waste Form Materials, SRNL is leveraging its depth of experience in radiological waste management to explore new frontiers in the industry.
Zachary S. Hartwig, Massimo Zucchetti
Fusion Science and Technology | Volume 60 | Number 2 | August 2011 | Pages 725-729
Nuclear Analysis & Experiments | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 2) | doi.org/10.13182/FST11-A12471
Articles are hosted by Taylor and Francis Online.
A critical aspect of the design of a tokamak-based neutron source is to ensure that radiation limits of the structural and magnet-insulating materials are not approached during the lifetime of the tokamak. To this end, we present an exploratory neutronics study of a materials testing facility that is based on Ignitor, a high-field tokamak. It shown that sufficient radiation damage to test materials located in the Ignitor first wall can be obtained by sustaining a reaction rate of 3.33×1019 neutrons per second for 7 operational months. Solutions to mitigate terminal damage to the toroidal field coil insulators, including its substitution for modern radiation-resistant insulators and the use of advanced radiation shield materials, are explored, and their implication for the design of the facility is discussed.