ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fermilab center renamed after late particle physicist Helen Edwards
Fermi National Accelerator Laboratory’s Integrated Engineering Research Center, which officially opened in January 2024, is now known as the Helen Edwards Engineering Center. The name was changed to honor the late particle physicist who led the design, construction, commissioning, and operation of the lab’s Tevatron accelerator and was part of the Water Resources Development Act signed by President Biden in December 2024, according to a Fermilab press release.
A. Serikov, U. Fischer, D. Grosse, M. J. Loughlin, M. Majerle, S. Schreck, P. Spaeh, D. Strauss
Fusion Science and Technology | Volume 60 | Number 2 | August 2011 | Pages 708-714
Nuclear Analysis & Experiments | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 2) | doi.org/10.13182/FST11-A12468
Articles are hosted by Taylor and Francis Online.
Neutronic analyses have been performed assessing the performance of the new radiation shielding design of the upper ports in the Neutral Beam (NB) cell of ITER. The scope of the work includes neutron and gamma spectra and nuclear heating calculations inside the port, as well as assessments of fluences, nuclear heating, and insulator radiation doses in the superconductive magnets in the vicinity of the upper port. For radiation transport calculations, the MCNP5 code has been applied with the Alite 4.1 standard 3D model of ITER, in which the inner structure of the upper port was converted from the underlying CAD (CATIA) data. The conversion has been accomplished by means of the McCad interface code. To address human safety issues, maps of shutdown dose rates have been produced using the Rigorous 2 Step (R2S) method enhanced with the mesh-tally capability. The mesh-based R2S approach couples the MCNP5 mesh-tallies with the radioactive inventory results calculated with the FISPACT-2007 activation code allowing automated calculations of shutdown doses including transport of decay gammas. All results satisfy the ITER radiation design requirements.