ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Mario Pillon, Maurizio Angelone, Sandro Sandri
Fusion Science and Technology | Volume 60 | Number 2 | August 2011 | Pages 687-691
Nuclear Analysis & Experiments | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 2) | doi.org/10.13182/FST11-A12464
Articles are hosted by Taylor and Francis Online.
Neutron activation of materials produces an energy release during the subsequent radioactive decay. In a fusion power plant this energy release is of the order of MWs. Accurate prediction of this decay heat is fundamental for the design of a fusion power plant, especially for the safety analysis. A very efficient detector system able to measure both electron and photon heats simultaneously and separately has been developed at ENEA Frascati and has been already used to validate the predictions of computer codes developed to calculate neutron activation energy release. In this paper we report measurements on some elements (tin, tantalum and lead) that have been irradiated with the D-T fusion neutrons produced by the Frascati Neutron Generator FNG. These elements could be present in ITER materials and give a significant contribution to the total radioactive inventory, especially if they produce long-live radionuclides. The scope of this study is to validate the general purpose code European Activation code System EASY-2007 comparing the results of the measurements with code predictions. The results are presented in terms of C/E (Calculation vs. Experiment) together with the associated uncertainties.