ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Mario Pillon, Maurizio Angelone, Sandro Sandri
Fusion Science and Technology | Volume 60 | Number 2 | August 2011 | Pages 687-691
Nuclear Analysis & Experiments | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 2) | doi.org/10.13182/FST11-A12464
Articles are hosted by Taylor and Francis Online.
Neutron activation of materials produces an energy release during the subsequent radioactive decay. In a fusion power plant this energy release is of the order of MWs. Accurate prediction of this decay heat is fundamental for the design of a fusion power plant, especially for the safety analysis. A very efficient detector system able to measure both electron and photon heats simultaneously and separately has been developed at ENEA Frascati and has been already used to validate the predictions of computer codes developed to calculate neutron activation energy release. In this paper we report measurements on some elements (tin, tantalum and lead) that have been irradiated with the D-T fusion neutrons produced by the Frascati Neutron Generator FNG. These elements could be present in ITER materials and give a significant contribution to the total radioactive inventory, especially if they produce long-live radionuclides. The scope of this study is to validate the general purpose code European Activation code System EASY-2007 comparing the results of the measurements with code predictions. The results are presented in terms of C/E (Calculation vs. Experiment) together with the associated uncertainties.