ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fermilab center renamed after late particle physicist Helen Edwards
Fermi National Accelerator Laboratory’s Integrated Engineering Research Center, which officially opened in January 2024, is now known as the Helen Edwards Engineering Center. The name was changed to honor the late particle physicist who led the design, construction, commissioning, and operation of the lab’s Tevatron accelerator and was part of the Water Resources Development Act signed by President Biden in December 2024, according to a Fermilab press release.
T. Tanaka et al.
Fusion Science and Technology | Volume 60 | Number 2 | August 2011 | Pages 681-686
Nuclear Analysis & Experiments | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 2) | doi.org/10.13182/FST11-A12463
Articles are hosted by Taylor and Francis Online.
To examine the accuracy in the neutronics calculations for the Li/V-alloy blanket system without Be neutron multiplier, a fusion neutronics experiment on a Li/V-alloy assembly has been performed with a 14 MeV neutron source. Reaction rates and tritium production rates (TPRs) in the assembly were measured with activation foils and Li2CO3 pellets. The measured reaction rates sensitive to fast neutrons agreed almost within ~10 % with ones calculated by using the MCNP5 code, JENDL-3.3 library and JENDL dosimetry file 99. Though there appeared a possibility of a significant underestimation in the transport calculations for the energy range of <~4 keV due to nuclear data of vanadium, the measured TPR was consistent with the calculated one within ~8 %.