ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
T. Tanaka et al.
Fusion Science and Technology | Volume 60 | Number 2 | August 2011 | Pages 681-686
Nuclear Analysis & Experiments | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 2) | doi.org/10.13182/FST11-A12463
Articles are hosted by Taylor and Francis Online.
To examine the accuracy in the neutronics calculations for the Li/V-alloy blanket system without Be neutron multiplier, a fusion neutronics experiment on a Li/V-alloy assembly has been performed with a 14 MeV neutron source. Reaction rates and tritium production rates (TPRs) in the assembly were measured with activation foils and Li2CO3 pellets. The measured reaction rates sensitive to fast neutrons agreed almost within ~10 % with ones calculated by using the MCNP5 code, JENDL-3.3 library and JENDL dosimetry file 99. Though there appeared a possibility of a significant underestimation in the transport calculations for the energy range of <~4 keV due to nuclear data of vanadium, the measured TPR was consistent with the calculated one within ~8 %.