ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
M. E. Sawan, A. M. Ibrahim, P. P. H. Wilson, E. P. Marriott, R. D. Stambaugh, C. P. C. Wong
Fusion Science and Technology | Volume 60 | Number 2 | August 2011 | Pages 671-675
Nuclear Analysis & Experiments | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 2) | doi.org/10.13182/FST11-A12461
Articles are hosted by Taylor and Francis Online.
3-D neutronics analysis was performed for the baseline design of FDF. Two blanket concepts were considered; Dual Coolant Lead Lithium (DCLL), and Helium Cooled Ceramic Breeder (HCCB). A peak outboard neutron wall loading of 2 MW/m2 and a fluence of 6 MW-yr/m2 can be achieved with 240 MW fusion power. The tritium breeding ratio is adequate for both blankets. Modest magnet damage parameters were obtained. However, it is recommended that the PF coil in the divertor region be moved vertically farther from the mid-plane to allow adding ~15 cm of shield to reduce the peak organic insulator dose to an acceptable level.