ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
A. Martin, E. Daly
Fusion Science and Technology | Volume 60 | Number 2 | August 2011 | Pages 653-657
Alternate Concepts & Magnets | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 2) | doi.org/10.13182/FST11-A12458
Articles are hosted by Taylor and Francis Online.
The operation of the ITER machine requires the implementation of two sets of coil systems installed inside the vessel - the edge-localized mode (ELM) coil system and the vertical stabilization (VS) coil system. The ELM coils generate resonant magnetic perturbations in order to reduce high power deposition in the divertor induced by ELM heating and can as an option be used to control moderately unstable resistive wall modes (RWM). The VS coils provide fast vertical stabilization of the plasma. There are three ELM coils in each 40 degrees vacuum vessel (VV) sector; one each in the lower, middle and upper segments for a total of twenty seven individually powered coils. ELM coils are 6-turn rectangular coils. There are two VS coils in the VV, in the lower and upper segments below and above the lower and upper ELM coils respectively. Each upper or lower VS coil is made with 4 turns independently fed for failure recovery in the event of a faulted turn. The In-Vessel Coils (IVCs) and feeders are placed under the blanket shield modules and manifolds and need to be compatible with them. An integrated design concept has been developed that provides for an integrated design of the IVCs and their feeders, the blanket manifolds and the blankets and their respective attachment features to the VV.