ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
L. Bromberg, M. Zarnstorff, O. Meneghini, T. Brown, P. Heitzenroeder, G. H. Neilson, J. V. Minervini, A. Boozer
Fusion Science and Technology | Volume 60 | Number 2 | August 2011 | Pages 643-647
Alternate Concepts & Magnets | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 2) | doi.org/10.13182/FST11-A12456
Articles are hosted by Taylor and Francis Online.
Substantial advances have been made in the design of stellarator configurations to satisfy physics properties and fabrication feasibility requirements for experimental devices. However, reactors will require further advances in configuration design, in particular with regard to maintenance and operational characteristics, in order to have high availability. The diamagnetic properties of bulk high temperature superconductor (HTS) material can be used to provide simple mechanisms for magnetic field-shaping by arranging them appropriately in an ambient field produced by relatively simple coils.A stellarator configuration has been developed based on this concept. A small number of toroidal field coils carrying appropriate current would be sufficient to create a background toroidal field. Discrete HTS monoliths (“pucks” or “tiles”) are placed on a shaped structure that can be split in the poloidal direction at arbitrary locations. This allows modular stellarators to be designed with large openings that provide access to remove interior plasma facing components, no longer restricted by highly shaped back legs of the modular coil winding. Unlike a coil, the structure can be assembled and disassembled in pieces of convenient size, facilitating maintenance.Calculations of the effect of the use of monoliths for field modification in stellarators and tokamaks will be described.