ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
L. Bromberg, H. Hashizume, S. Ito, J. V. Minervini, N. Yanagi
Fusion Science and Technology | Volume 60 | Number 2 | August 2011 | Pages 635-642
Alternate Concepts & Magnets | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 2) | doi.org/10.13182/FST11-A12455
Articles are hosted by Taylor and Francis Online.
Since the discovery of high temperature superconductors (HTS) more than 2 decades ago, there has been interest in their use for future fusion machines. Lack of performance of commercially available materials, however, dampened the initial optimism. However, recent advances in HTS materials, mostly second-generation tapes, open attractive topologies. In addition to reduced cryogenic loads and increased superconducting stability, the HTS tapes may allow demountable magnets that could be very helpful in the long term (for reactor maintenance) and in the intermediate term, for component-testing machines which require large access. Tests on joints have demonstrated that the thermal load due to the Joule dissipation in these joints is small, allowing operation with very long pulses without restrictions on cost of electricity or power availability.There are challenges in the use of HTS in magnets in general, and fusion specifically. The excellent properties of HTS materials, e.g., YBCO (YBa2Cu3O7-) superconductors operating at elevated temperatures (> 30K) also offer operational advantages for fusion machines, but there are challenges, such as the manufacturing of high current cables and methods of quench protection.In addition to tapes, HTS can be fabricated as monoliths. These monoliths offer the possibility of field control for complex geometries, such as generating stellarator-like fields from simple toroidal fields.This paper summarizes work at MIT and in Japan on concept development and testing, as well as challenges ahead.