ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Xiaoling Yang et al.
Fusion Science and Technology | Volume 60 | Number 2 | August 2011 | Pages 615-619
Alternate Concepts & Magnets | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 2) | doi.org/10.13182/FST11-A12451
Articles are hosted by Taylor and Francis Online.
A volumetrically-loaded ultra-high-density deuterium cluster material is described here for use as a deuteron beam source in laser matter interactions. Due to high volumetric loading, the material has potential to provide enough deuteron beam flux for the inertial confinement fusion (ICF) fuel ignition, avoiding depletion problem encountered by current proton-driven fast ignition (FI). In addition, accelerated deuterons can fuse with the ICF fuel (both D and T) to provide extra “bonus” energy gain, which further relaxes the laser-driver energy needed. Preliminary TRIDENT sub-Petawatt Laser experiments have provided some encouraging results showing that our cluster foils with a relative low packing fraction, can achieve a high yield of the accelerated deuterons even in the presence of an unwanted surface contaminant.