ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Xiaoling Yang et al.
Fusion Science and Technology | Volume 60 | Number 2 | August 2011 | Pages 615-619
Alternate Concepts & Magnets | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 2) | doi.org/10.13182/FST11-A12451
Articles are hosted by Taylor and Francis Online.
A volumetrically-loaded ultra-high-density deuterium cluster material is described here for use as a deuteron beam source in laser matter interactions. Due to high volumetric loading, the material has potential to provide enough deuteron beam flux for the inertial confinement fusion (ICF) fuel ignition, avoiding depletion problem encountered by current proton-driven fast ignition (FI). In addition, accelerated deuterons can fuse with the ICF fuel (both D and T) to provide extra “bonus” energy gain, which further relaxes the laser-driver energy needed. Preliminary TRIDENT sub-Petawatt Laser experiments have provided some encouraging results showing that our cluster foils with a relative low packing fraction, can achieve a high yield of the accelerated deuterons even in the presence of an unwanted surface contaminant.