ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Yu. Igitkhanov, E. Polunovsky, C. D. Beidler
Fusion Science and Technology | Volume 50 | Number 2 | August 2006 | Pages 268-275
Technical Paper | Stellarators | doi.org/10.13182/FST06-A1245
Articles are hosted by Taylor and Francis Online.
The stellarator impurity transport code has been developed to describe the evolution of the impurity concentration and convective and diffusive fluxes of different charge states in time and space for given background plasma profiles in nonaxisymmetric devices. An extended model of neoclassical transport coefficients obtained by benchmarking of various methods has been employed for calculation of the radial electric field and for description of impurity ions. Calculations were performed mainly for light impurity species for background plasma profiles in high-density long-pulse Large Helical Device (LHD) discharges with and without an externally induced island at the edge and for W7-AS discharges with low and high confinement. It is shown that in the frame of neoclassical theory, the forces due to the radial electric field, the temperature gradient (convective terms), and the density gradient (diffusive term) mainly determine the impurity dynamics and eventually, together with atomic processes, the radial distribution of each ionization stage. Calculations show that in LHD discharges a different sign of the electric field (measured in experiment) within the island ensures the effective pumping of impurities within the island and their screening from penetration into the bulk plasma. It is shown that in the frame of purely neoclassical theory, the retention of impurities at the plasma edge, seen in the high-density H-mode of operation in W7-AS, cannot be explained.