ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Yu. Igitkhanov, E. Polunovsky, C. D. Beidler
Fusion Science and Technology | Volume 50 | Number 2 | August 2006 | Pages 268-275
Technical Paper | Stellarators | doi.org/10.13182/FST06-A1245
Articles are hosted by Taylor and Francis Online.
The stellarator impurity transport code has been developed to describe the evolution of the impurity concentration and convective and diffusive fluxes of different charge states in time and space for given background plasma profiles in nonaxisymmetric devices. An extended model of neoclassical transport coefficients obtained by benchmarking of various methods has been employed for calculation of the radial electric field and for description of impurity ions. Calculations were performed mainly for light impurity species for background plasma profiles in high-density long-pulse Large Helical Device (LHD) discharges with and without an externally induced island at the edge and for W7-AS discharges with low and high confinement. It is shown that in the frame of neoclassical theory, the forces due to the radial electric field, the temperature gradient (convective terms), and the density gradient (diffusive term) mainly determine the impurity dynamics and eventually, together with atomic processes, the radial distribution of each ionization stage. Calculations show that in LHD discharges a different sign of the electric field (measured in experiment) within the island ensures the effective pumping of impurities within the island and their screening from penetration into the bulk plasma. It is shown that in the frame of purely neoclassical theory, the retention of impurities at the plasma edge, seen in the high-density H-mode of operation in W7-AS, cannot be explained.