ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Santiago Cuesta-Lopez, J. M. Perlado
Fusion Science and Technology | Volume 60 | Number 2 | August 2011 | Pages 590-594
IFE Design & Technology | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 2) | doi.org/10.13182/FST11-A12447
Articles are hosted by Taylor and Francis Online.
We report non-equilibrium Molecular Dynamics simulations providing a nanoscale view for the modeling of shock wave generation, propagation and melting in single crystalline materials Fe, Ta, W, of clear interest for Nuclear Fusion Technology. Our methodology successfully uses massive parallel molecular dynamics in an attempt to cover similar times and length scales as laser-shock experiments. Response of the materials are analyzed in terms of modern atomistic visualization and evolution of their structural properties. Preliminary results point that Wand Ta behave more efficiently in terms of uniformity under shock propagation than lighter materials like Fe. This kind of materials must attract our attention in the short term as possible designs in inertial confinement fusion (ICF) targets.