ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Kunihiro Yamamoto, Zensaku Kawara, Tomoaki Kunugi, Takayoshi Norimatsu
Fusion Science and Technology | Volume 60 | Number 2 | August 2011 | Pages 585-589
IFE Design & Technology | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 2) | doi.org/10.13182/FST11-A12446
Articles are hosted by Taylor and Francis Online.
To protect from high-energy fluxes caused by nuclear fusion reaction to a first wall of a laser-fusion reactor such as KOYO reactor, the cascade-type falling liquid-metal film flow was proposed as a liquid-wall concept which was one of the reactor chamber cooling and wall protection schemes. In this concept, vapor released by fuel targets and the liquid wall will be condensed on the chamber ceiling which is kept relatively cold. The condensed liquid-metal vapor makes many droplets on the ceiling, and then the droplets will agglomerate, and eventually make the liquid film on the ceiling surface. The liquid-metal film will flow from the ceiling to the liquid first-wall. In this study, the proof-of-principal (POP) experiments and numerical simulations were conducted regarding the liquid-film flow on the ceiling wall. It is found that if the liquid film is formed on the ceiling surface, the liquid flows along the ceiling wall and from the ceiling wall down to the reactor core as long as the vapor is supplied. Moreover, the measurements of the liquid-film thickness were taken by using a confocal laser scanning microscopy, and the effects of the wettability of the wall on the liquid film flow behavior were obtained.