ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Kunihiro Yamamoto, Zensaku Kawara, Tomoaki Kunugi, Takayoshi Norimatsu
Fusion Science and Technology | Volume 60 | Number 2 | August 2011 | Pages 585-589
IFE Design & Technology | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 2) | doi.org/10.13182/FST11-A12446
Articles are hosted by Taylor and Francis Online.
To protect from high-energy fluxes caused by nuclear fusion reaction to a first wall of a laser-fusion reactor such as KOYO reactor, the cascade-type falling liquid-metal film flow was proposed as a liquid-wall concept which was one of the reactor chamber cooling and wall protection schemes. In this concept, vapor released by fuel targets and the liquid wall will be condensed on the chamber ceiling which is kept relatively cold. The condensed liquid-metal vapor makes many droplets on the ceiling, and then the droplets will agglomerate, and eventually make the liquid film on the ceiling surface. The liquid-metal film will flow from the ceiling to the liquid first-wall. In this study, the proof-of-principal (POP) experiments and numerical simulations were conducted regarding the liquid-film flow on the ceiling wall. It is found that if the liquid film is formed on the ceiling surface, the liquid flows along the ceiling wall and from the ceiling wall down to the reactor core as long as the vapor is supplied. Moreover, the measurements of the liquid-film thickness were taken by using a confocal laser scanning microscopy, and the effects of the wettability of the wall on the liquid film flow behavior were obtained.