ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fermilab center renamed after late particle physicist Helen Edwards
Fermi National Accelerator Laboratory’s Integrated Engineering Research Center, which officially opened in January 2024, is now known as the Helen Edwards Engineering Center. The name was changed to honor the late particle physicist who led the design, construction, commissioning, and operation of the lab’s Tevatron accelerator and was part of the Water Resources Development Act signed by President Biden in December 2024, according to a Fermilab press release.
J. Sanz, R. Juárez, F. Ognissanto, J. M. Perlado
Fusion Science and Technology | Volume 60 | Number 2 | August 2011 | Pages 579-584
IFE Design & Technology | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 2) | doi.org/10.13182/FST11-A12445
Articles are hosted by Taylor and Francis Online.
One of the critical decisions in the HiPER project is to select the most appropriate material for the reaction chamber. Within this framework, we investigate the performance of different steel alloys with respect to waste management. The capabilities of commercial steels, both austenitic and ferritic/martensitic, compared to reduced-activation ferritic/martensitic steels are evaluated as for different waste management strategies (near surface burial, clearance, hands-on and remote recycling). The examined materials are: SS304, SS316, mod.9Cr-1Mo and HT9 and EUROFER. Real impurities concentrations are taken into account, and their impact is analyzed. In the study, we have assumed the most exigent HiPER 4a irradiation scenario. Commercial steels revealed to be a suitable choice for the HiPER reaction chamber, as far as their waste management options do not differ significantly from those of the reduced activation ferritic steel case. We found that for mod.9Cr-1Mo and EUROFER hands-on recycling is already possible after a cooling time shorter than 50 years and that shallow-land burial is practicable for all the steel alloys studied. The impurities present in the real heats affects the cooling time for manual recycling but not significantly. Shallow-land burial feasibility is not perturbed by the presence of impurities in the real commercial heats. Moreover, the impact of activation cross section uncertainties on the waste management assessment of the irradiated steels has been analyzed, and it is found to be of no practical significance to determine eligibility of the considered steels for the HIPER 4a reaction chamber.