ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
A more open future for nuclear research
A growing number of institutional, national, and funder mandates are requiring researchers to make their published work immediately publicly accessible, through either open repositories or open access (OA) publications. In addition, both private and public funders are developing policies, such as those from the Office of Science and Technology Policy and the European Commission, that ask researchers to make publicly available at the time of publication as much of their underlying data and other materials as possible. These, combined with movement in the scientific community toward embracing open science principles (seen, for example, in the dramatic rise of preprint servers like arXiv), demonstrate a need for a different kind of publishing outlet.
I. Tazhibayeva, I. Lyublinski, A. Vertkov, V. Lazarev, E. Azizov, G. Mazzitelli, P. Agostini
Fusion Science and Technology | Volume 60 | Number 2 | August 2011 | Pages 554-557
Blanket Design and Experiments | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 2) | doi.org/10.13182/FST11-A12441
Articles are hosted by Taylor and Francis Online.
The objective of this work is to carry out the tests of the KTM tokamak lithium divertor model as well as develop recommendations on the use of lithium technologies in tokamak-reactors. Li-technology will be developed and a Na-K cooled KTM tokamak lithium divertor module will be designed and tested as a result of the project completion. It will be possible to operate the renewed lithium surface module under specific heat loads from 2 to 10 MW/m2 while in a quasi-stationary mode, discharge duration of up to ~5 s. The technical project proposal; design scheme and sketches; and procedure development for preparation, protection, cleaning and rehabilitation of lithium CPS (capillary-porous system) surfaces in tokamak conditions have been completed. The design substantiation calculations; technique development for lithium handling in tokamak conditions; and confirming experiments on T-11M tokamak to prove the procedures developed are still in a progress. The study of both the lithium influence on the KTM plasma discharge parameters and specific power load on the plasma facing components as well as the selection of optimum operational modes of the lithium divertor will be accomplished after completion of the start-up and adjustment tests of the KTM tokamak divertor demonstration models.