ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Japan gets new U for enrichment as global power and fuel plans grow
President Trump is in Japan today, with a visit with new Prime Minister Sanae Takaichi on the agenda. Takaichi, who took office just last week as Japan’s first female prime minister, has already spoken in favor of nuclear energy and of accelerating the restart of Japan’s long-shuttered power reactors, as Reuters and others have reported. Much of the uranium to power those reactors will be enriched at Japan’s lone enrichment facility—part of Japan Nuclear Fuel Ltd.’s Rokkasho fuel complex—which accepted its first delivery of fresh uranium hexafluoride (UF₆) in 11 years earlier this month.
I. Tazhibayeva, I. Lyublinski, A. Vertkov, V. Lazarev, E. Azizov, G. Mazzitelli, P. Agostini
Fusion Science and Technology | Volume 60 | Number 2 | August 2011 | Pages 554-557
Blanket Design and Experiments | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 2) | doi.org/10.13182/FST11-A12441
Articles are hosted by Taylor and Francis Online.
The objective of this work is to carry out the tests of the KTM tokamak lithium divertor model as well as develop recommendations on the use of lithium technologies in tokamak-reactors. Li-technology will be developed and a Na-K cooled KTM tokamak lithium divertor module will be designed and tested as a result of the project completion. It will be possible to operate the renewed lithium surface module under specific heat loads from 2 to 10 MW/m2 while in a quasi-stationary mode, discharge duration of up to ~5 s. The technical project proposal; design scheme and sketches; and procedure development for preparation, protection, cleaning and rehabilitation of lithium CPS (capillary-porous system) surfaces in tokamak conditions have been completed. The design substantiation calculations; technique development for lithium handling in tokamak conditions; and confirming experiments on T-11M tokamak to prove the procedures developed are still in a progress. The study of both the lithium influence on the KTM plasma discharge parameters and specific power load on the plasma facing components as well as the selection of optimum operational modes of the lithium divertor will be accomplished after completion of the start-up and adjustment tests of the KTM tokamak divertor demonstration models.