ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Jun Soo Lee, Dong Won Lee, Goon Cherl Park
Fusion Science and Technology | Volume 60 | Number 2 | August 2011 | Pages 544-548
Blanket Design and Experiments | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 2) | doi.org/10.13182/FST11-A12439
Articles are hosted by Taylor and Francis Online.
Through consideration of the requirements for a DEMO-relevant blanket concept, Korea (KO) has proposed a He-Cooled Molten Lithium (HCML) Test Blanket Module (TBM) for testing in the International Thermonuclear Experimental Reactor (ITER). To validate the safety of the HCML TBM design concept and guarantee high efficiency of the power conversion system, an evaluation of the heat transfer capability of the gas coolant in a high Reynolds number regime should precede this test. In this study, a thermal hydraulic test with a high-pressure nitrogen gas loop was performed and a thermal hydraulic analysis was carried out with the commercial CFD code Fluent 6.3.26 and the system code GAMMA (Gas Multicomponent Mixture Analysis) under the same test conditions. In the experiment, a single TBM First Wall (FW) mock-up made from the same material as the KO TBM, ferritic martensitic steel, was used, and the test was performed at pressures of 11, 19 and 29 bar and under various flow rates ranging from 0.63 to 2.44 kg/min. As one-side of the mock-up was heated by a furnace heater at a constant temperature, the wall temperatures were measured by installed thermocouples, with the measured temperatures showing strong parity with code results simulated under the same test conditions. Even with the system code using the modified Dittus-Boelter correlation, which was developed under a different heating condition, the three-dimensional approach of the system code is capable of estimating a one-sided heating condition in a fusion application.