ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
F. Arranz et al.
Fusion Science and Technology | Volume 60 | Number 2 | August 2011 | Pages 538-543
Blanket Design and Experiments | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 2) | doi.org/10.13182/FST11-A12438
Articles are hosted by Taylor and Francis Online.
The IFMIF-EVEDA beam dump must be able to stop deuteron continuous and pulsed beams with energies up to 9 MeV. The maximum beam power is 1.12 MW corresponding to a beam current of 125 mA. The design is based on a copper cone 2500 mm long, 300 mm aperture diameter, 5-6.5 mm thickness, whose inner surface faces the beam. The cooling is provided by water flowing at high velocity along its outer surface.Electroforming of copper on an aluminum mandrel has been considered the most suitable manufacturing technology. Nevertheless some issues must be addressed before the final decision is taken. The joint of the flange at the aperture and the possibility of manufacturing different parts subsequently joining them by electroforming is analyzed by carrying out tensile tests with specimens with and without joints.Mechanical properties and chemical composition are studied. The radiological impact of the measured impurities due to their activation under the deuteron flux is also assessed .The comparison of the properties obtained with the different manufacturing possibilities will allow choosing the most adequate one.