ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fermilab center renamed after late particle physicist Helen Edwards
Fermi National Accelerator Laboratory’s Integrated Engineering Research Center, which officially opened in January 2024, is now known as the Helen Edwards Engineering Center. The name was changed to honor the late particle physicist who led the design, construction, commissioning, and operation of the lab’s Tevatron accelerator and was part of the Water Resources Development Act signed by President Biden in December 2024, according to a Fermilab press release.
J. W. Leachman
Fusion Science and Technology | Volume 60 | Number 2 | August 2011 | Pages 486-490
Plasma Engineering - Fueling and Diagnostics | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 2) | doi.org/10.13182/FST60-486
Articles are hosted by Taylor and Francis Online.
Visco-plastic flow properties of hydrogenic solids are important considerations for the design and operation of continuous hydrogenic pellet extrusion systems. Prior to 2010, the visco-plastic flow behavior of deuterium, tritium, and mixtures of the isotopes was only known at 14 K and no heat transfer studies were available. To address these needs, a Cryogenic Couette Viscometer (CCV) was developed at the University of Wisconsin-Madison. Visco-plastic flow characteristics of solid neon, deuterium, and hydrogen were measured using the CCV from the onset of solidification to sub-cooled solid states over a range of shear rates. This paper discusses the transformation of these measurements, using the Quantum Law of Corresponding States, to predict the visco-plastic flow behavior of solid tritium and deuterium-tritium mixtures. Comparisons of predicted values with experimental measurements are made, where available.