ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
J. W. Leachman
Fusion Science and Technology | Volume 60 | Number 2 | August 2011 | Pages 486-490
Plasma Engineering - Fueling and Diagnostics | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 2) | doi.org/10.13182/FST60-486
Articles are hosted by Taylor and Francis Online.
Visco-plastic flow properties of hydrogenic solids are important considerations for the design and operation of continuous hydrogenic pellet extrusion systems. Prior to 2010, the visco-plastic flow behavior of deuterium, tritium, and mixtures of the isotopes was only known at 14 K and no heat transfer studies were available. To address these needs, a Cryogenic Couette Viscometer (CCV) was developed at the University of Wisconsin-Madison. Visco-plastic flow characteristics of solid neon, deuterium, and hydrogen were measured using the CCV from the onset of solidification to sub-cooled solid states over a range of shear rates. This paper discusses the transformation of these measurements, using the Quantum Law of Corresponding States, to predict the visco-plastic flow behavior of solid tritium and deuterium-tritium mixtures. Comparisons of predicted values with experimental measurements are made, where available.