ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
W. A. Cooper, J. P. Graves, T. M. Tran, R. Gruber, T. Yamaguchi, Y. Narushima, S. Okamura, S. Sakakibara, C. Suzuki, K. Y. Watanabe, H. Yamada, K. Yamazaki
Fusion Science and Technology | Volume 50 | Number 2 | August 2006 | Pages 245-257
Technical Paper | Stellarators | doi.org/10.13182/FST06-A1242
Articles are hosted by Taylor and Francis Online.
The three-dimensional (3-D) VMEC code has been modified to model an energetic species with a variant of a Bi-Maxwellian distribution function that satisfies the constraint B[nabla][script F]h = 0, and the 3-D TERPSICHORE stability code has been extended to investigate the effects of pressure anisotropy in two limits. The lower limit is based on a purely fluid Kruskal-Oberman (KO) energy principle (ignoring the stabilizing kinetic integral), and the upper limit is obtained from an energy principle in which the hot particle pressure and current density refrain from interacting with the dynamics of the instability because their diamagnetic drift frequency is considered much larger than the dominant growth rate. We have specifically investigated the instability properties of a Heliotron device with a major radius of 3.9 m and total <> [approximately equal to] 3.9%, where the energetic particle contribution <h> varies from 0 to 1.3% for T