ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Inkjet droplets of radioactive material enable quick, precise testing at NIST
Researchers at the National Institute of Standards and Technology have developed a technique called cryogenic decay energy spectrometry capable of detecting single radioactive decay events from tiny material samples and simultaneously identifying the atoms involved. In time, the technology could replace characterization tasks that have taken months and could support rapid, accurate radiopharmaceutical development and used nuclear fuel recycling, according to an article published on July 8 by NIST.
Michaela Martinkova, Milan Kalal, Yong Yoo Rhee
Fusion Science and Technology | Volume 60 | Number 1 | July 2011 | Pages 84-89
doi.org/10.13182/FST11-A12410
Articles are hosted by Taylor and Francis Online.
Interactions of high-intensity femtosecond lasers with deuterium clusters leading to Coulomb explosions and subsequent production of fusion neutrons have attracted considerable attention in recent years. In order to maximize the neutron yield, finding the dependence of clusters size and their spatial distribution on the experimental conditions has become very important. In this paper, we analyze the possibility of measuring the spatial distributions of deuterium clusters experimentally by using the complex interferometry diagnostics. For this purpose, close-to-reality computer-generated interferograms were produced, which included a small phase-shift disturbance modeling the clusters. Subsequent analysis of these interferograms provided results that identified this diagnostics as potentially suitable for such measurements.