ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Jeongtae Cho, Gyunyoung Heo, Young-Seok Lee, Hyuk-Jong Kim
Fusion Science and Technology | Volume 60 | Number 1 | July 2011 | Pages 69-74
doi.org/10.13182/FST11-A12407
Articles are hosted by Taylor and Francis Online.
The Korean fusion technology roadmap specifies the construction of a fusion power plant at demonstrative scale by 2030. Obviously, the safety requirements for demonstration fusion reactors will be quite different and more stringent than that of experimental reactors. Nevertheless, the regulatory framework for such reactors was not fully matured due to the limited resources and the lack of technical feasibility in Korea. Sharing with the motivation, this research investigated and compared the safety characteristics of fission and fusion power plants to facilitate designing of engineered safety features. Korea has gained a vast experience over the last 30 years, regarding design, construction and operation of both pressurized light and heavy water reactors, which is useful to address the attributes for fission power plants. In case of fusion reactor technology, the operational experiences with ITER and K-STAR can be referred, considering their demonstration scale. Comparative study was performed in top-down manner. We compared the top requirements such as safety principles and defense-in-depth for fusion and fission power plants. The inherent safety parameters such as the reactivity feedback coefficients of fission power plants were investigated how these parameters would be represented in fusion power plants. The limits for operating conditions for a fusion reactor were investigated to recognize important parameters which would contribute to nuclear safety or, more specifically accident prevention. For the accidents beyond the operation limits, the need of engineering safety features was found indispensable for accident mitigation. However, it is anticipated that the engineering safety features for fusion reactors will be reduced in number, size, type, and safety-margin because the total amount of hazardous material is much lower as compared to fission reactors. Finally we proposed the table of contents of safety analysis report for fusion power plants borrowing the basic structure from the safety reports on fission reactors. The outcome of this study helps to prioritize research projects to be devoted for analyzing the safety of demonstration fusion plant, and to develop design and regulatory framework in South Korea.