ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Jeongtae Cho, Gyunyoung Heo, Young-Seok Lee, Hyuk-Jong Kim
Fusion Science and Technology | Volume 60 | Number 1 | July 2011 | Pages 69-74
doi.org/10.13182/FST11-A12407
Articles are hosted by Taylor and Francis Online.
The Korean fusion technology roadmap specifies the construction of a fusion power plant at demonstrative scale by 2030. Obviously, the safety requirements for demonstration fusion reactors will be quite different and more stringent than that of experimental reactors. Nevertheless, the regulatory framework for such reactors was not fully matured due to the limited resources and the lack of technical feasibility in Korea. Sharing with the motivation, this research investigated and compared the safety characteristics of fission and fusion power plants to facilitate designing of engineered safety features. Korea has gained a vast experience over the last 30 years, regarding design, construction and operation of both pressurized light and heavy water reactors, which is useful to address the attributes for fission power plants. In case of fusion reactor technology, the operational experiences with ITER and K-STAR can be referred, considering their demonstration scale. Comparative study was performed in top-down manner. We compared the top requirements such as safety principles and defense-in-depth for fusion and fission power plants. The inherent safety parameters such as the reactivity feedback coefficients of fission power plants were investigated how these parameters would be represented in fusion power plants. The limits for operating conditions for a fusion reactor were investigated to recognize important parameters which would contribute to nuclear safety or, more specifically accident prevention. For the accidents beyond the operation limits, the need of engineering safety features was found indispensable for accident mitigation. However, it is anticipated that the engineering safety features for fusion reactors will be reduced in number, size, type, and safety-margin because the total amount of hazardous material is much lower as compared to fission reactors. Finally we proposed the table of contents of safety analysis report for fusion power plants borrowing the basic structure from the safety reports on fission reactors. The outcome of this study helps to prioritize research projects to be devoted for analyzing the safety of demonstration fusion plant, and to develop design and regulatory framework in South Korea.