ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
G. Chandrashekara, N. Rudraiah
Fusion Science and Technology | Volume 60 | Number 1 | July 2011 | Pages 56-63
doi.org/10.13182/FST11-A12405
Articles are hosted by Taylor and Francis Online.
This paper is concerned with the study of the Electrorheological Kelvin-Helmholtz Instability (EKHI) at the interface between a poorly conducting couple stress fluid saturated porous layer which is in relative motion with a poorly conducting couple stress fluid in a thin shell in the presence of a transverse electric field and laser radiation. A simple theory based on fully developed flow approximations is used to derive the dispersion relation for the growth rate of EKHI. The cutoff and the maximum wave numbers and the corresponding maximum frequencies are obtained. It is shown that the effects of couple stress parameter, laser radiation and the electric field reduce the growth rate of KHI considerably compared to a non-conducting fluid in the absence of an electric field. These are favorable to control the surface instabilities in many practical applications discussed in this paper.