ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
O. Meneghini, S. Shiraiwa, I. Faust, R. R. Parker, A. Schmidt, G. Wallace
Fusion Science and Technology | Volume 60 | Number 1 | July 2011 | Pages 40-47
doi.org/10.13182/FST11-A12403
Articles are hosted by Taylor and Francis Online.
Non-inductive lower hybrid current drive (LHCD) experiments have been carried out on the Alcator C-Mod tokamak and the hard x-ray (HXR) spectrum has been measured. An improved analysis technique of the experimental HXR data has been developed to more accurately evaluate the HXR flux for this type of discharge. We have simulated a similar LHCD discharge with the full wave code LHEAF (Lower Hybrid wavE Analysis based on FEM). This code, combined with the newly developed 3D Fokker-Planck (v∥, v⊥, r) and synthetic HXR diagnostic modules, to calculate the steady state electron distribution function in the plasma and the resulting HXR radiation spectrum. The simulated non-thermal x-ray proflle shave been found to be in good agreement with the measured experimental profile. In particular LHEAF simulations were able to reproduce the broad width of the measured HXR profile for a discharge with low n∥, which has been a long standing issue for LHCD simulations on Alcator C-Mod.