ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
O. Meneghini, S. Shiraiwa, I. Faust, R. R. Parker, A. Schmidt, G. Wallace
Fusion Science and Technology | Volume 60 | Number 1 | July 2011 | Pages 40-47
doi.org/10.13182/FST11-A12403
Articles are hosted by Taylor and Francis Online.
Non-inductive lower hybrid current drive (LHCD) experiments have been carried out on the Alcator C-Mod tokamak and the hard x-ray (HXR) spectrum has been measured. An improved analysis technique of the experimental HXR data has been developed to more accurately evaluate the HXR flux for this type of discharge. We have simulated a similar LHCD discharge with the full wave code LHEAF (Lower Hybrid wavE Analysis based on FEM). This code, combined with the newly developed 3D Fokker-Planck (v∥, v⊥, r) and synthetic HXR diagnostic modules, to calculate the steady state electron distribution function in the plasma and the resulting HXR radiation spectrum. The simulated non-thermal x-ray proflle shave been found to be in good agreement with the measured experimental profile. In particular LHEAF simulations were able to reproduce the broad width of the measured HXR profile for a discharge with low n∥, which has been a long standing issue for LHCD simulations on Alcator C-Mod.