ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
M. S. Ladygina, I. E. Garkusha, A. K. Marchenko, V. A. Makhlai, M. J. Sadowski, E. Skladnik-Sadowska, N. N. Aksenov, V. I. Tereshin
Fusion Science and Technology | Volume 60 | Number 1 | July 2011 | Pages 27-33
doi.org/10.13182/FST11-A12401
Articles are hosted by Taylor and Francis Online.
This report presents the results of experimental studies of powerful plasma impacts upon tungsten and carbon surfaces, which are ITER relevant Plasma Facing Materials (PFMs). The simulation experiments were carried out with a QSPA Kh-50 (Quasi-Stationary Plasma Accelerator) in Kharkov Institute of Physics and Technology (Ukraine) and an RPI-IBIS (Multi-Rod Plasma Injector) facility in the Andrzej Soltan Institute for Nuclear Studies (IPJ) Swierk (Poland).QSPA Kh-50 generates hydrogen plasma streams of duration of 0.25 ms and the heat loads in the range of 0.2–2.5 MJ/m2, which correspond to the Edge Localized Modes (ELM) impacts expected in ITER. The plasma stream diameter is 18 cm, averaged ion energy is about 0.4 keV, and the maximum plasma pressure achieves 3.2 bar. Due to that fact, using the QSPA Kh-50 it is possible to simulate ITER transient events. Deuterium plasma streams with power density of 10-50 W/m2 and pulse duration of 1-5 s, generated by RPI-IBIS were used for comparative studies and determination of an initial stage of evaporated impurities dynamics during plasma-surface interactions as well as features of surface damages appearing under varied plasma parameters.In order to determinate the main plasma parameters (an electron density and temperature) and to study of impurities behavior at the time of discharge the use was made of optical spectroscopy methods. The onset of a vapor shield in front of the target surface was investigated in dependence on a surface heat load for tungsten (W) and carbon (C) targets. Information about dynamics of the W- and C-ions production was obtained.Some issues of the droplet splashing at the tungsten surfaces and the formation of hot spots upon the graphite surface, which can be sources of the enhanced evaporation, are also discussed.