ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
M. S. Ladygina, I. E. Garkusha, A. K. Marchenko, V. A. Makhlai, M. J. Sadowski, E. Skladnik-Sadowska, N. N. Aksenov, V. I. Tereshin
Fusion Science and Technology | Volume 60 | Number 1 | July 2011 | Pages 27-33
doi.org/10.13182/FST11-A12401
Articles are hosted by Taylor and Francis Online.
This report presents the results of experimental studies of powerful plasma impacts upon tungsten and carbon surfaces, which are ITER relevant Plasma Facing Materials (PFMs). The simulation experiments were carried out with a QSPA Kh-50 (Quasi-Stationary Plasma Accelerator) in Kharkov Institute of Physics and Technology (Ukraine) and an RPI-IBIS (Multi-Rod Plasma Injector) facility in the Andrzej Soltan Institute for Nuclear Studies (IPJ) Swierk (Poland).QSPA Kh-50 generates hydrogen plasma streams of duration of 0.25 ms and the heat loads in the range of 0.2–2.5 MJ/m2, which correspond to the Edge Localized Modes (ELM) impacts expected in ITER. The plasma stream diameter is 18 cm, averaged ion energy is about 0.4 keV, and the maximum plasma pressure achieves 3.2 bar. Due to that fact, using the QSPA Kh-50 it is possible to simulate ITER transient events. Deuterium plasma streams with power density of 10-50 W/m2 and pulse duration of 1-5 s, generated by RPI-IBIS were used for comparative studies and determination of an initial stage of evaporated impurities dynamics during plasma-surface interactions as well as features of surface damages appearing under varied plasma parameters.In order to determinate the main plasma parameters (an electron density and temperature) and to study of impurities behavior at the time of discharge the use was made of optical spectroscopy methods. The onset of a vapor shield in front of the target surface was investigated in dependence on a surface heat load for tungsten (W) and carbon (C) targets. Information about dynamics of the W- and C-ions production was obtained.Some issues of the droplet splashing at the tungsten surfaces and the formation of hot spots upon the graphite surface, which can be sources of the enhanced evaporation, are also discussed.