ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Discovering, Making, and Testing New Materials: SRNL’s Center For Hierarchical Waste Form Materials
Savannah River National Laboratory researchers are building on the laboratory’s legacy of using cutting-edge science to effectively immobilize nuclear waste in innovative ways. As part of the Center for Hierarchical Waste Form Materials, SRNL is leveraging its depth of experience in radiological waste management to explore new frontiers in the industry.
Myoung-Suk Kang, Gyunyoung Heo, Young-Seok Lee, Hyuck Jong Kim
Fusion Science and Technology | Volume 60 | Number 1 | July 2011 | Pages 1-8
doi.org/10.13182/FST11-A12397
Articles are hosted by Taylor and Francis Online.
This paper surveyed the safety issues and the related engineered safety features for designing Korean demonstration fusion power plant. Since the design process was staying at a conceptual stage and regulatory requirements were not fully matured, it was significant to investigate the broad options and select feasible candidates. In order to straddle system's performance and risk, the study followed the principles of Axiomatic Design (AD) and Fault Tree Analysis (FTA). The interplay of AD and FTA facilitates developing the design of fusion power plants for enhancing performance (power generation) and reducing risk (radiation hazard). While AD is a synthesis process in the success domain to compromise functional requirements and design options in terms of a functional hierarchy tree, FTA considers a safety analysis process in the failure domain. The functional hierarchy tree, which is also named as a functional requirement and design parameter tree, showed the entire fusion power plant with multiple design candidates in a hierarchic manner. This tree can be transformed into a fault tree. While developing the fault tree, the list of DBAs which are the failure modes for the leaves of the fault tree could be recognized, and the associated engineered safety features were proposed depending on the consequences of a DBA. As a demonstration for analyzing a DBA, the mass and energy release calculation for in-vessel loss of coolant accident was described.