ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fermilab center renamed after late particle physicist Helen Edwards
Fermi National Accelerator Laboratory’s Integrated Engineering Research Center, which officially opened in January 2024, is now known as the Helen Edwards Engineering Center. The name was changed to honor the late particle physicist who led the design, construction, commissioning, and operation of the lab’s Tevatron accelerator and was part of the Water Resources Development Act signed by President Biden in December 2024, according to a Fermilab press release.
Jeong-Yong Park, Yang-Il Jung, Byung-Kwon Choi, Yong Hwan Jeong, Suk-Kwon Kim, Dong Won Lee, Seungyon Cho
Fusion Science and Technology | Volume 60 | Number 1 | July 2011 | Pages 422-425
Materials Development & Plasma-Material Interactions | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 1) | doi.org/10.13182/FST11-A12393
Articles are hosted by Taylor and Francis Online.
A joining of Be to ferritic-martensitic steels (FMS) is an essential process in the fabrication of ITER test blanket module (TBM). The diffusion barrier layers together with the coated interlayer were applied to the HIP joining of Be and FMS in order to develop the interlayer technology for the fabrication of ITER TBM. Multiple layers formed due to an excessive diffusion of elements in the interface region in the absence of a diffusion barrier layer. Such a complicated interface structure consisting of brittle phases in part would be very prone to fracture even at low stress levels. A Cu foil or a HIPed CuCrZr layer applied as a diffusion barrier was effective to retard the diffusion between Be and FMS. It was revealed that the diffusion barrier layers helped to improve the joining properties by reducing the possibility to form diffusion layers in the interface, which made the Be/FMS joint have an appreciable joining strength.