ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
S. Nogami, J. Miyazaki, T. Nagasaka, A. Hasegawa, T. Muroga
Fusion Science and Technology | Volume 60 | Number 1 | July 2011 | Pages 417-421
Materials Development & Plasma-Material Interactions | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 1) | doi.org/10.13182/FST11-A12392
Articles are hosted by Taylor and Francis Online.
The hardness distribution and the effect of post welding heat treatment (PWHT) at 600°C and 1000°C for 1 h and aging heat treatment at 600°C for 1000 h in the dissimilar-material electron beam weld (EBW) joint with pure-V and SUS316L austenitic stainless steel were investigated. The electron beam was positioned just on the butt joint (EB00), shifted by 0.2 mm (EB02) and 0.4 mm (EB04) on the pure-V side. The EBW joint was distinguished into the base metal of V (V-BM), weld metal (WM), interlayer at the edge of the WM of SUS316L side (IL) and base metal of SUS316L (SUS316L-BM). The IL was observed only in the EB02 and EB04 joints. The formation of macro-pore was observed in the EB04 joint. Much higher hardness was observed at the WM and IL of the as-welded EB00 and EB02 joints than the other regions of them. The hardness change in the WM was relatively small due to the PWHT at 600°C up to 1 h, whereas significant increment was observed due to the PWHT at 1000°C for 1 h regardless of the EB position. The hardness of the IL after the PWHT at 600°C was almost twice higher than that of the as-welded one, which showed slightly further increment at 1000°C. Rapid increment of the hardness due to the aging at 600°C for 1–10 h and slightly further increment of it due to the aging for 100–500 h occurred in the WM of the EB00 joint.