ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
S. Nogami, J. Miyazaki, T. Nagasaka, A. Hasegawa, T. Muroga
Fusion Science and Technology | Volume 60 | Number 1 | July 2011 | Pages 417-421
Materials Development & Plasma-Material Interactions | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 1) | doi.org/10.13182/FST11-A12392
Articles are hosted by Taylor and Francis Online.
The hardness distribution and the effect of post welding heat treatment (PWHT) at 600°C and 1000°C for 1 h and aging heat treatment at 600°C for 1000 h in the dissimilar-material electron beam weld (EBW) joint with pure-V and SUS316L austenitic stainless steel were investigated. The electron beam was positioned just on the butt joint (EB00), shifted by 0.2 mm (EB02) and 0.4 mm (EB04) on the pure-V side. The EBW joint was distinguished into the base metal of V (V-BM), weld metal (WM), interlayer at the edge of the WM of SUS316L side (IL) and base metal of SUS316L (SUS316L-BM). The IL was observed only in the EB02 and EB04 joints. The formation of macro-pore was observed in the EB04 joint. Much higher hardness was observed at the WM and IL of the as-welded EB00 and EB02 joints than the other regions of them. The hardness change in the WM was relatively small due to the PWHT at 600°C up to 1 h, whereas significant increment was observed due to the PWHT at 1000°C for 1 h regardless of the EB position. The hardness of the IL after the PWHT at 600°C was almost twice higher than that of the as-welded one, which showed slightly further increment at 1000°C. Rapid increment of the hardness due to the aging at 600°C for 1–10 h and slightly further increment of it due to the aging for 100–500 h occurred in the WM of the EB00 joint.