ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fermilab center renamed after late particle physicist Helen Edwards
Fermi National Accelerator Laboratory’s Integrated Engineering Research Center, which officially opened in January 2024, is now known as the Helen Edwards Engineering Center. The name was changed to honor the late particle physicist who led the design, construction, commissioning, and operation of the lab’s Tevatron accelerator and was part of the Water Resources Development Act signed by President Biden in December 2024, according to a Fermilab press release.
Katsushi Matsuoka, Makoto Kobayashi, Rie Kurata, Junya Osuo, Naoko Ashikawa, Akio Sagara, Yasuhisa Oya, Kenji Okuno
Fusion Science and Technology | Volume 60 | Number 1 | July 2011 | Pages 412-416
Materials Development & Plasma-Material Interactions | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 1) | doi.org/10.13182/FST11-A12391
Articles are hosted by Taylor and Francis Online.
Impurity effects on chemical behavior of energetic deuterium implanted into the carbon-oxygen containing boron films were investigated as a function of impurity concentrations by means of XPS and TDS. This study was carried out for about 40% impurities-containing boron films. It was found that a major chemical state of carbon was C-B bond and that of oxygen was free oxygen for the carbon-oxygen containing boron films. Most of deuterium was trapped by the C-B bond to form a B-C-D bond. On the other hand, free oxygen formed heavy water (D2O) and released as D2O during deuterium implantation. The amount of deuterium trapped by carbon was increased as the carbon concentration increased. However, the deuterium retention for the carbon-oxygen containing boron film with less than 20% carbon was almost twice as high as that for the only about 20% carbon-containing boron films. It was also indicated that the formation of free carbon was refrained due to the existence of free oxygen which induce the increase of C-B bond in about 40% impurities-containing boron films. These results indicate that hydrogen isotopes were trapped as B-C-D bond, which released deuterium at 900 K, in lower carbon concentration as oxygen coexists with carbon in the boron films. It was concluded that impurity concentration should be kept as low as possible to prevent tritium retention in the boron film deposited on the first wall in future fusion devices.