ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Discovering, Making, and Testing New Materials: SRNL’s Center For Hierarchical Waste Form Materials
Savannah River National Laboratory researchers are building on the laboratory’s legacy of using cutting-edge science to effectively immobilize nuclear waste in innovative ways. As part of the Center for Hierarchical Waste Form Materials, SRNL is leveraging its depth of experience in radiological waste management to explore new frontiers in the industry.
Makoto Kobayashi et al.
Fusion Science and Technology | Volume 60 | Number 1 | July 2011 | Pages 403-406
Materials Development & Plasma-Material Interactions | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 1) | doi.org/10.13182/FST11-A12389
Articles are hosted by Taylor and Francis Online.
The trapping and release mechanisms of hydrogen isotopes for the stainless steel (SS) oxidized at various temperatures were investigated. The oxide layer was mainly consisted of iron oxides (FexOy) and its decomposition temperature was almost consistent with the release temperature of deuterium, where major chemical form was a molecular deuterium (D2). The deuterium retention was increased as the oxidation temperature increased. It was considered that the thickness of oxide layer would make a large influence on the retention of hydrogen isotopes. On the other hand, the amount of released deuterium as heavy water (D2O) was independent with oxidation temperature. It was considered that the formation of hydrogen isotope as water form was depended on the amount of FexOy on the top most surface layer of SS.