ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Discovering, Making, and Testing New Materials: SRNL’s Center For Hierarchical Waste Form Materials
Savannah River National Laboratory researchers are building on the laboratory’s legacy of using cutting-edge science to effectively immobilize nuclear waste in innovative ways. As part of the Center for Hierarchical Waste Form Materials, SRNL is leveraging its depth of experience in radiological waste management to explore new frontiers in the industry.
Takuya Nagasaka, Takeo Muroga, Takeshi Miyazawa, Hideo Watanabe, Masanori Yamazaki
Fusion Science and Technology | Volume 60 | Number 1 | July 2011 | Pages 379-383
Materials Development & Plasma-Material Interactions | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 1) | doi.org/10.13182/FST11-A12384
Articles are hosted by Taylor and Francis Online.
A reference low-activation vanadium alloy NIFS-HEAT-2 was neutron-irradiated at 450 °C and below, in order to estimate the resistance to low temperature irradiation. DBTT of NIFS-HEAT-2 was -85 °C after irradiation up to 8.5 dpa at 450 °C in Na atmosphere, while DBTT was below -196 °C for 3.7 dpa at 430 °C in Li atmosphere. On the other hand, DBTT was lower than about -90 °C for the irradiation up to 0.1~1 dpa at 60, 290 and 400 °C. The DBTT shift was increased with increasing hardness after neutron irradiation for limited irradiation conditions. The mechanisms of DBTT shift and irradiation hardening at low temperature was discussed.