ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
G. E. Youngblood, E. C. Thomsen, R. J. Shinavski
Fusion Science and Technology | Volume 60 | Number 1 | July 2011 | Pages 364-368
Materials Development & Plasma-Material Interactions | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 1) | doi.org/10.13182/FST11-A12381
Articles are hosted by Taylor and Francis Online.
Electrical conductivity (EC) data for several plate forms of two-dimensional, silicon carbide composite made with chemical vapor infiltration matrix and with Hi NicalonTM type S fibers (2D-SiCf/CVI-SiC) were acquired. The composite fibers were coated with pyrocarbon (PyC) of various thicknesses (50 to 310 nm) and an outer thin (~60 m) SiC “seal coat” was applied by CVD to the infiltrated plates.The EC was highly anisotropic in the transverse and in-plane directions. In-plane EC ranged from ~150 to 1600 S/m, increased slowly with increasing temperature, and depended primarily on the total PyC thickness. High in-plane EC-values occur because it is dominated by conduction along the numerous, continuous PyC fiber coating pathways. Transverse EC ranged from ~1 to 60 S/m, and increased strongly with increasing temperature up to 800°C. The transverse EC is controlled by conduction through the interconnections of the carbon-coating network within and between fiber bundles, especially at moderate temperatures (~300 to 700°C). Below ~300°C, the electrical resistance of the pure SiC seal coat becomes increasingly more important as temperatures are further lowered.Importantly, a “3-layer series” model predicts that transverse EC-values for a standard seal-coated 2D-SiCf/CVI-SiC with a monolayer PyC fiber coating of ~50-nm thickness will be <20 S/m for all temperatures up to 800°C, as desired for a flow channel insert in a fusion reactor blanket component.