ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
G. E. Youngblood, E. C. Thomsen, R. J. Shinavski
Fusion Science and Technology | Volume 60 | Number 1 | July 2011 | Pages 364-368
Materials Development & Plasma-Material Interactions | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 1) | doi.org/10.13182/FST11-A12381
Articles are hosted by Taylor and Francis Online.
Electrical conductivity (EC) data for several plate forms of two-dimensional, silicon carbide composite made with chemical vapor infiltration matrix and with Hi NicalonTM type S fibers (2D-SiCf/CVI-SiC) were acquired. The composite fibers were coated with pyrocarbon (PyC) of various thicknesses (50 to 310 nm) and an outer thin (~60 m) SiC “seal coat” was applied by CVD to the infiltrated plates.The EC was highly anisotropic in the transverse and in-plane directions. In-plane EC ranged from ~150 to 1600 S/m, increased slowly with increasing temperature, and depended primarily on the total PyC thickness. High in-plane EC-values occur because it is dominated by conduction along the numerous, continuous PyC fiber coating pathways. Transverse EC ranged from ~1 to 60 S/m, and increased strongly with increasing temperature up to 800°C. The transverse EC is controlled by conduction through the interconnections of the carbon-coating network within and between fiber bundles, especially at moderate temperatures (~300 to 700°C). Below ~300°C, the electrical resistance of the pure SiC seal coat becomes increasingly more important as temperatures are further lowered.Importantly, a “3-layer series” model predicts that transverse EC-values for a standard seal-coated 2D-SiCf/CVI-SiC with a monolayer PyC fiber coating of ~50-nm thickness will be <20 S/m for all temperatures up to 800°C, as desired for a flow channel insert in a fusion reactor blanket component.