ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Y. F. Li, M. Kondo, T. Nagasaka, T. Muroga, V. Tsisar
Fusion Science and Technology | Volume 60 | Number 1 | July 2011 | Pages 359-363
Materials Development & Plasma-Material Interactions | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 1) | doi.org/10.13182/FST11-A12380
Articles are hosted by Taylor and Francis Online.
In this work, corrosion experiments on 9Cr-ODS and CLAM steels were carried out in static Pb-Li at 873 K for 250 h. Both steels showed weight loss and softening near the surface after the exposure. Tensile properties did not change and creep properties degraded slightly for 9Cr-ODS steel. In contrast, CLAM steel showed hardening by increase in tensile strength and creep rupture time, and decrease in minimum creep rate and reduction of area. The metallurgical analyses showed that the both steels were non-uniformly corroded by preferential corrosion at grain and sub-grain boundaries. Near the surface, carbides were lost and Cr was depleted to several tens of m depth. The depletion was heavier for 9Cr-ODS than for CLAM. The corrosion mechanism was proposed to be a loss of protective oxide layer followed by dissolution of Cr in matrix into liquid Pb-Li. The more pronounced corrosion effect on 9Cr-ODS than on CLAM may be due to finer grain and sub-grain size enhancing preferential attack by Pb-Li at the boundaries, or lack of Mn in 9Cr-ODS, which can form protective layers for CLAM.