ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Ryan Hunt, Hongjie Zhang, Alice Ying, Michael Ulrickson
Fusion Science and Technology | Volume 60 | Number 1 | July 2011 | Pages 354-358
Materials Development & Plasma-Material Interactions | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 1) | doi.org/10.13182/FST11-A12379
Articles are hosted by Taylor and Francis Online.
This research reveals the results of a thermo-mechanical stress analysis of the beryllium and CuCrZr components of the Enhanced Heat Flux (EHF) First Wall (FW). Under the EHF thermal load, differential thermal expansion at the Be/CuCrZr interface can potentially lead to failure of the beryllium tiles. We have shown that the stress profile in both beryllium and CuCrZr can be improved by reducing the dimensions of the beryllium tiles covering the FW panels.In addition, our research investigated a failure condition for the FW finger's design. Specifically, we assessed the temperature profile at the CuCrZr/water interface of the EHF FW finger in the event of a single failed tile. This was done in order to determine whether or not the critical heat flux condition occurs in the coolant channel after a single tile failure. Assuming the failure of a single tile between 11.75mm and 50mm in size, temperature profiles were generated assuming flat, rectangular water cooling channels. It was found that tile failure from the edges of the finger resulted in considerably higher temperatures than tile failures at the middle of the finger. Failure of a tile along the edge of the finger may cause catastrophic failure, as the critical heat flux condition occurred at the CuCrZr/water interface even for tiles as small as 11.75mm in size.