ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fermilab center renamed after late particle physicist Helen Edwards
Fermi National Accelerator Laboratory’s Integrated Engineering Research Center, which officially opened in January 2024, is now known as the Helen Edwards Engineering Center. The name was changed to honor the late particle physicist who led the design, construction, commissioning, and operation of the lab’s Tevatron accelerator and was part of the Water Resources Development Act signed by President Biden in December 2024, according to a Fermilab press release.
Ryan Hunt, Hongjie Zhang, Alice Ying, Michael Ulrickson
Fusion Science and Technology | Volume 60 | Number 1 | July 2011 | Pages 354-358
Materials Development & Plasma-Material Interactions | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 1) | doi.org/10.13182/FST11-A12379
Articles are hosted by Taylor and Francis Online.
This research reveals the results of a thermo-mechanical stress analysis of the beryllium and CuCrZr components of the Enhanced Heat Flux (EHF) First Wall (FW). Under the EHF thermal load, differential thermal expansion at the Be/CuCrZr interface can potentially lead to failure of the beryllium tiles. We have shown that the stress profile in both beryllium and CuCrZr can be improved by reducing the dimensions of the beryllium tiles covering the FW panels.In addition, our research investigated a failure condition for the FW finger's design. Specifically, we assessed the temperature profile at the CuCrZr/water interface of the EHF FW finger in the event of a single failed tile. This was done in order to determine whether or not the critical heat flux condition occurs in the coolant channel after a single tile failure. Assuming the failure of a single tile between 11.75mm and 50mm in size, temperature profiles were generated assuming flat, rectangular water cooling channels. It was found that tile failure from the edges of the finger resulted in considerably higher temperatures than tile failures at the middle of the finger. Failure of a tile along the edge of the finger may cause catastrophic failure, as the critical heat flux condition occurred at the CuCrZr/water interface even for tiles as small as 11.75mm in size.