ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
F. Genco, A. Hassanein
Fusion Science and Technology | Volume 60 | Number 1 | July 2011 | Pages 339-343
Materials Development & Plasma-Material Interactions | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 1) | doi.org/10.13182/FST11-A12376
Articles are hosted by Taylor and Francis Online.
Off normal operating conditions resulting from plasma instabilities such as disruptions, edge-localized modes (ELM), and vertical displacement events (VDE) in tokamaks are to be expected with the potential of high energy deposition on plasma facing components (PFC). This high-energy dump in short duration, will result in extremely high temperatures of the PFC leading to melting and evaporation of the surfaces. Erosion resulting from these processes is life-limiting for the PFC as well as potential plasma contamination and degradation of performance. A comprehensive understanding based on the interplay of all physical processes during plasma instabilities on the divertor plate is necessary in order to improve reliability and characterize the performance of this key component. A novel particle-in-cell (PIC) technique has been developed and integrated into the existing HEIGHTS package in order to verify and have another perspective in assessing these problems.The HEIGHTS multi-dimensional integrated models take into account different stages of the plasma material interaction and its evolution along time. The extent of the damage will essentially depend on the intensity and duration of energy deposited on PFC. Both bulk and surface damages can take place depending on these parameters. For this reason different deposition times have been considered ranging from several microseconds to tens of milliseconds in order to provide comprehensive evolution of material erosion and transport. Comparison of the newly implemented PIC methods with current HEIGHTS existing models are discussed.