ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
K. A. Tanaka, A. Hassanein, Y. Hirooka, T. Kono, S. Misaki, T. Ohishi, A. Sunahara, S. Tanaka
Fusion Science and Technology | Volume 60 | Number 1 | July 2011 | Pages 329-333
Materials Development & Plasma-Material Interactions | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 1) | doi.org/10.13182/FST11-A12374
Articles are hosted by Taylor and Francis Online.
Laser ablation scheme can cover pretty wide range of intensity regime as a heat source at its laser focus spot from 103 W/cm2 to 1014 W/cm2. These intensities cover the ones expected at the divertor (MFE) and the first walls (IFE) in a reactor. For example expected values are of 10 to 100 MW/m2 at MFE divertor and 109 W/cm2 or higher at IFE first walls. The ablation may include plasma, gas, liquid, or solid: all possible phases mixed at an extreme condition where temperature may exceed 1 eV with corresponding densities. The areas of these mixed phases at extreme conditions (MPEC) have not been systematically studied. The inside of the solid wall becomes so called “Warm Dense Matter” where the details of the states should still be clarified.In our experimental setting up, the ablated plumes can be aligned orthogonally and can cross each other. The collision processes include Coulomb, elastic, molecular, and cluster collisions at the cross point. The characteristics of this experimental platform are introduced and attractive application is indicated.